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1 Introduction

Magnetic Circuits offer, as do electric circuits, a way of simplifying the analysis of
magnetic field systems which can be represented as having a collection of discrete
elements. In electric circuits the elements are sources, resistors and so forth which are
represented as having discrete currents and voltages. These elements are connected
together with ‘wires’ and their behavior is described by network constraints (Kirchhoff’s
voltage and current laws) and by constitutive relationships such as Ohm’s Law. In
magnetic circuits the lumped parameters are called ‘Reluctances’(the inverse of
‘Reluctance’ is called ‘Permeance’). The analog to a ‘wire’ is referred to as a high
permeance magnetic circuit element. Of course high permeability is the analog of high
conductivity.

By organizing magnetic field systems into lumped parameter elements and using network
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constraints and constitutive relationships we can simplify the analysis of such systems.
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2 Electric Circuits

First, let us review how Electric Circuits are defined. We start with two conservation laws:
conservation of charge and Faraday’s Law. From these we can, with appropriate
simplifying assumptions, derive the two fundamental circuit constraints embodied in
Kirchhoff’s laws.
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2.1 KCL

Conservation of charge could be written in integral form as:
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This simply states that the sum of current out of some volume of space and rate of change
of free charge in that space must be zero.

Now, if we define a discrete current to be the integral of current density crossing through
a part of the surface:
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and if we assume that there is no accumulation of charge within the volume (in ordinary
circuit theory the nodes are small and do not accumulate charge), we have:
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which holds if the sum over the index k includes all current paths into the node. This is,
of course, KCL.

2.2 THFEERBERRELE Kirchhoff's Voltage Law (KVL)
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Faraday’s Law is, in integral form:
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where the closed loop in the left hand side of the equation is the edge of the surface of the
integral on the right hand side.
Now if we define voltage in the usual way, between points a and b for element &:
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Then, if we assume that the right-hand side of Faraday’s Law (that is, magnetic induction)
is zero, the loop equation becomes:
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This works for circuit analysis because most circuits do not involve magnetic induction in
the loops. However, it does form the basis for much head scratching over voltages
encountered by ‘ground loops’.
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2.3 Constitutive Relationship: Ohm’s Law

Many of the materials used in electric circuits carry current through a linear conduction
mechanism. That is, the relationship between electric field and electric current density is

" FENE magnetic induction
8 B [E]E% ground loop



J=0oFE (7)
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Suppose, to start, we can identify a piece of stuff which has constant area and which is
carrying current over some finite length, as shown in Figure 1. Assume this rod is
carrying current density J (We won’t say anything about how this current density
managed to get into the rod, but assume that it is connected to something that can carry
current (perhaps a wire....). Total current carried by the rod is simply

I=1J1A
PR A i I BB Y -

And then voltage across the element is:

- 12
= | FE-dlt =—I
Y / cA

e B3 - PFIEESEIEE & -

from which we conclude the resistance is
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Figure 1: Simple Rod Shaped Resistor
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Of course we can still employ the lumped parameter picture even with elements that are
more complex. Consider the annular resistor shown in Figure 2. This is an end-on view of
something which is uniform in cross-section and has depth D in the direction you can’t
see. Assume that the inner and outer elements are very good conductors, relative to the
annular element in between. Assume further that this element has conductivity ¢ and
inner and outer radii R; and R, respectively.
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would be:

Now, if the thing is carrying current from the inner to the outer electrode, current density
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Then voltage is
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so that we conclude the resistance of this element is
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3 Magnetic Circuit Analogs

In the electric circuit, elements for which voltage and current are defined are connected
together by elements thought of as ‘wires’, or elements with zero or negligible voltage
drop. The interconnection points are ‘nodes’. In magnetic circuits the analogous thing
occurs: elements for which magnetomotive force and flux can be defined are connected
together by high permeability magnetic circuit elements (usually iron) which are the
analog of wires in electric circuits.
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Gauss’ Law is:
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which means that the total amount of flux coming out of a region of space is always zero.
Now, we will define a quantity which is sometimes called simply ‘flux’ or a ‘flux tube’.
This might be thought to be a collection of flux lines that can somehow be bundled
together. Generally it is the flux that is identified with a magnetic circuit element.
Mathematically it is:
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In most cases, flux as defined above is carried in magnetic circuit elements which are
made of high permeability material, analogous to the ‘wires’ of high conductivity
material which carry current in electric circuits. It is possible to show that flux is largely
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contained in such high permeability materials.
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If all of the flux tubes out of some region of space ("'node’) are considered in the sum,
they must add to zero:
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3.2 Analogy to KVL: MMF

Ampere’s Law is

j{'ﬁ.diz //f-ﬁda (11)
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Where, as for Faraday’s Law, the closed contour on the left is the periphery of the
(open)surface on the right. Now we define what we call Magnetomotive Force, in direct
analog to ‘Electromotive Force’, (voltage).
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Further, define the current enclosed by a loop to be:
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Then the analogy to KVL is:
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Note that the analog is not exact as there is a source term on the right hand side whereas
KVL has no source term. Note also that sign counts here. The closed integral is taken in
such direction so that the positive sense of the surface enclosed is positive (upwards)
when the surface is to the left of the contour.(This is another way of stating the celebrated
‘right hand rule’: if you wrap your right hand around the contour with your fingers
pointing in the direction of the closed contour integration, your thumb is pointing in the
positive direction for the surface).
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3.3 Analog to Ohm’s Law: Reluctance

Consider a ‘gap’ between two high permeability pieces as shown in Figure 3. If we
assume that their permeability is high enough, we can assume that there is no magnetic
field H in them and so the MMF or ‘magnetic potential’ is essentially constant, just like
in a wire. For the moment, assume that the gap dimension g is ‘small’ and uniform over
the gap area A. Now, assume that some flux @ is flowing from one of these to the other.
That flux is

®= BA

ez B REIPs IR - A BERRERE o &y T RUEDHT » JFIREE T 8%
E’Jxﬁ(ﬁf EOMEEIRE N EGRE LI LMELE - Y B 22 TR SRR I 1o (]
e HIPR P o B 22D » HE55RE Ry

where B is the flux density crossing the gap and A is the gap area. Note that we are
ignoring ‘fringing’ fields in this simplified analysis. This neglect often requires correction
in practice. Since the permeability of free space is uy, (assuming the gap is indeed filled
with ’free space’), magnetic field intensity is
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and gap MMF is just magnetic field intensity times gap dimension. This, of course,

assumes that the gap is uniform and that so is the magnetic field intensity:

12 Fifir magnetic potential
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Which means that the reluctance of the gap is the ratio of MMF to flux:
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Figure 3: Air Gap
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3.4 Simple Case

Consider the magnetic circuit situation shown in Figure 4. Here there is a piece of highly
permeable material shaped to carry flux across a single air-gap. A coil is wound through
the window in the magnetic material (this shape is usually referred to as a ‘core’). The
equivalent circuit is shown in Figure 5.
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Figure 4: Single air-capped Core
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Note that in Figure 4, if we take as the positive sense of the closed loop a direction which
goes vertically upwards through the leg of the core through the coil and then downwards
through the gap, the current crosses the surface surrounded by the contour in the positive
sense direction.
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Figure 5: Equivalent Circuit
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3.5 Flux Confinement

The gap in this case has the same reluctance as computed earlier, so that the flux in the

— NI . . .- .
gap is simply =7 Now, by focusing on the two regions indicated we might make a
few observations about magnetic circuits. First, consider ‘region 1’ as shown in Figure 6.
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Figure 6: Flux Confinement Boundary: This is ’Region 1’
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In this picture, note that magnetic field H parallel to the surface must be the same inside
the material as it is outside. Consider Ampere’s Law carried out about a very thin loop
consisting of the two arrows drawn at the top boundary of the material in Figure 6 with

very short vertical paths joining them. If there is no current singularity inside that loop,
the integral around it must be zero which means the magnetic field just inside must be the

same as the magnetic field outside. Since B = ,uﬁ , and "highly permeable’ means p is
very large, unless B is really large, H must be quite small. Thus the magnetic circuit

has small magnetic field H and therefore flux densities parallel to and just outside its
boundaries are also small.
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Figure 7: Gap Boundary
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At the surface of the magnetic material, since the magnetic field parallel to the surface
must be very small, any flux lines that emerge from the core element must be
perpendicular to the surface as shown for the gap region in Figure 7. This is true for
region 1 as well as for region 2, but note that the total MMF available to drive fields
across the gap is the same as would produce field lines from the area of region 1. Since
any lines emerging from the magnetic material in region 1 would have very long
magnetic paths, they must be very weak. Thus the magnetic circuit material largely
confines flux, with only the relatively high permeance (low reluctance) gaps carrying any
substantive amount of flux.
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3.6 Example: C-Core

Consider a ‘gapped’ c-core as shown in Figure 8. This is two pieces of highly permeable
material shaped generally like ‘C’s. They have uniform depth in the direction you cannot
see. We will call that dimension D. Of course the area A = wD, where w is the width at
the gap. We assume the two gaps have the same area. Each of the gaps will have a
reluctance
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Suppose we wind a coil with N turns on this core as shown in Figure 9.Then we put a
current / in that coil. The magnetic circuit equivalent is shown in Figure 10. The two gaps

are in series and, of course, in series with the MMF source. Since the two fluxes are the
same and the MMF’s add:
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and corresponding flux density in the gaps would be
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Figure 8: Gapped Core
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Figure 9: Wound, Gapped Core
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3.7 Example: Core with Different Gaps

As a second example, consider the perhaps oddly shaped core shown in Figure 11.
Suppose the gap on the right has twice the area as the gap on the left. We would have two
gap reluctances:
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Since the two gaps are in series the flux is the same and the total reluctance is
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Flux in the magnetic circuit loop is
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and the flux density across, say, the left hand gap would be:
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Figure 10: Equivalent Magnetic Circuit
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Figure 11: Wound, Gapped Core: Different Gaps
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